(z^3+i)(z^2+iz-2-6i)=0

Simple and best practice solution for (z^3+i)(z^2+iz-2-6i)=0 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (z^3+i)(z^2+iz-2-6i)=0 equation:


Simplifying
(z3 + i)(z2 + iz + -2 + -6i) = 0

Reorder the terms:
(i + z3)(z2 + iz + -2 + -6i) = 0

Reorder the terms:
(i + z3)(-2 + -6i + iz + z2) = 0

Multiply (i + z3) * (-2 + -6i + iz + z2)
(i(-2 + -6i + iz + z2) + z3(-2 + -6i + iz + z2)) = 0
((-2 * i + -6i * i + iz * i + z2 * i) + z3(-2 + -6i + iz + z2)) = 0

Reorder the terms:
((-2i + iz2 + -6i2 + i2z) + z3(-2 + -6i + iz + z2)) = 0
((-2i + iz2 + -6i2 + i2z) + z3(-2 + -6i + iz + z2)) = 0
(-2i + iz2 + -6i2 + i2z + (-2 * z3 + -6i * z3 + iz * z3 + z2 * z3)) = 0

Reorder the terms:
(-2i + iz2 + -6i2 + i2z + (-6iz3 + iz4 + -2z3 + z5)) = 0
(-2i + iz2 + -6i2 + i2z + (-6iz3 + iz4 + -2z3 + z5)) = 0

Reorder the terms:
(-2i + iz2 + -6iz3 + iz4 + -6i2 + i2z + -2z3 + z5) = 0
(-2i + iz2 + -6iz3 + iz4 + -6i2 + i2z + -2z3 + z5) = 0

Solving
-2i + iz2 + -6iz3 + iz4 + -6i2 + i2z + -2z3 + z5 = 0

Solving for variable 'i'.

The solution to this equation could not be determined.

See similar equations:

| 5*8x=80 | | 4n-9=3n+2 | | 17x+4x+5x+10x=360 | | 30+5x=15x | | ^3sqrt(9y^11)/^3sqrt(125x^12) | | 5=an+bc | | R=(15-.25*(15))(.12) | | 3x+18+38=40+85 | | 14=19+5h | | 2x+12+38=40+85 | | An+bc=5 | | 5(q+3)-10= | | (2x^2)+ax+b=0 | | -20-15d=35 | | 3(y+3)-6= | | 50x^2-450=0 | | 2x+66=x+96 | | 4x+66=x+96 | | 3(x-20)=50 | | 3=5e+18 | | 3.5*7.1= | | 8t+6=2t | | 9y-4x=63 | | -7-(-2)+(-15)-2= | | 1/sqrt(2y) | | 117+61+54+x=360 | | 117+61+54=360 | | 4x-18+18=2x+20 | | 9f-3=6f | | 6d=8d-6 | | 5c=7c-12 | | 0.2(x+10)+0.6x=18 |

Equations solver categories